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Abstract

In today’s digital world, traces of almost all human activity are logged in various da-
tabases, which some have termed the  social genome data. When appropriate methods 
are applied to this real-world data, the potential for new insights is endless. The social 
genome data may transform many fi elds of science, just as the human genome data 
has transformed biology. Yet, obtaining, accessing, integrating, cleaning, and using the 
social genome data to realize its full potential has many computational, statistical, and 
ethical challenges. The general methodological approach adopted to study human be-
havior found in the social genome data is data science. The application of data science 
in an iterative spiral process can result in the transformation of  data to information to 
knowledge to action by iterating between inductive and deductive reasoning. Data sci-
ence applies methods from both computer science and statistics, and also seeks to syn-
thesize them and develop new methods to address the context and needs of a particular 
disciplinary fi eld. In this paper, the importance of incorporating  human judgment and 
expert domain knowledge into the data science activities at all steps and the numerous 
design decisions required to obtain valid results and ultimately useful insights is em-
phasized. Challenges and open questions in applying data science to the emerging fi eld 
of digital ethology for scientifi c inquiry follow. In sum, data science  teams must have a 
wide view to see the context, understand ethical considerations of the data, and be able 
to communicate both the insights and the limitations inherent in the data.

Introduction

Over the last few decades, most of the processes in our society have been 
digitized, leading to a new digital world where almost all traces of human 
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activities, from birth to death, are captured in various databases. In our pre-
vious work, we have referred to the digital footprints left by humans as the 
social genome data (Kum et al. 2014); that is, large-scale datasets of records 
collected from a large proportion of individuals in a population that report on 
people’s interactions with governments, businesses, and other individuals—
collected and linked from many data sources (e.g., the health, education, fi nan-
cial, Census, location, shopping, employment, or social networking records). 
This encompasses all aspects of human activity including exposure and out-
come data. Social genome data are the basis of population informatics (Kum 
et al. 2014), also called population data science (McGrail and Jones 2018), 
which leverages these large, complex, diverse, integrated individual-level real-
world data to address population scale research questions and gain insights by 
observing human behavior in the digital traces (Kum et al. 2014).

Just as human genome data has transformed, for example, biology in many 
ways, the potential for new insights when appropriate methods are applied to 
social genome data is endless and may transform many fi elds of science. Yet, 
obtaining, accessing, integrating, cleaning, and using the social genome data to 
realize its full potential has many computational, statistical, and ethical chal-
lenges (Blei and Smyth 2017; Cesare et al. 2018; Haneef et al. 2022). We adopt 
the view that social genome data are  big data as characterized by some aspects 
of the scale, complexity, heterogeneity, and  uncertainty of the data sometimes 
referred to as the fi ve Vs of big data: volume, velocity, variety, veracity, and 
value. This requires a new way of synthesizing insight from the raw real-world 
data beyond the traditional methods, regardless of the size of data (Borgman et 
al. 2015; Ekbia et al. 2015).

In this paper, we fi rst present a brief overview of data science as we de-
fi ne the phrase, the general methodological approach we adopt to study human 
behavior in the social genome data. This includes a description of how data 
science results in the transformation of data to information to knowledge to ac-
tion. Then we present challenges and open questions in applying data science 
to the emerging fi eld of digital ethology.

To ground and motivate our discussion, we introduce a case study involv-
ing a hypothetical (but in many ways realistic) analysis  into the impacts of a 
wildfi re smoke event on the population of a city. Wildfi re smoke is rapidly be-
coming a signifi cant public health and climate justice issue (Black et al. 2017; 
Liu et al. 2015; Reid and Maestas 2019). Smoke events aff ect many aspects 
of behavior and activity, and, as such, our hypothetical analysts must work 
with data regarding many aspects of the life and structure of the city includ-
ing, for instance, data about emergency department (ED) visits, meteorological 
conditions, and traffi  c patterns. This includes both data about individuals and 
also data about the environment—both physical and social—around those in-
dividuals, which are all part of the social genome data (see chapters by Smith, 
Pallante et al., and Sandine, this volume). Analyzing this diverse collection of 
data to produce actionable policy that could improve residents’ well-being will 
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require a data science  team that includes expertise in domain science,1 statis-
tics/math, and computer science/IT (Cao 2017). We will use this scenario to 
illustrate diff erent aspects of the data science analysis process.

Data, Information, Knowledge, and Action (DIKA)

The main methodological approach that is needed to extract information and 
knowledge from the social genome data to obtain new insights about human 
behavior is data science. We adopt the view that data science applies meth-
ods from both computer science and statistics but also seeks to “blend them, 
refocus them, and develop new methods to address the context” and needs 
of a particular disciplinary fi eld (Blei and Smyth 2017). In addition, we em-
phasize the importance of incorporating  human judgments and expert domain 
knowledge into the data science activities in all steps to obtain valid results and 
ultimately useful insights. Data science requires sensemaking techniques bor-
rowed from cognitive science (Grolemund and Wickham 2014) that allow the 
data scientists to apply their work to a larger framework. Further, the methods 
and techniques required for this may vary by domain, and even by research 
question. Data scientists need to be able to have a wide view to see the con-
text of the question at hand, understand ethical considerations of the data, and 
be able to communicate both the insights and the limitations inherent in the 
data (Blei and Smyth 2017). Data science overlaps in many ways with the 
fi eld of Knowledge Discovery and Data Mining (KDD), traditionally defi ned 
as “the non-trivial process of identifying valid, novel, potentially useful, and 
ultimately understandable patterns in data” (Fayyad et al. 1996). We postulate 
that data science as a methodology goes beyond KDD in that it explicitly in-
cludes the timely and eff ective communication of the patterns to the relevant 
stakeholders to support knowledge, decisions, and actions.

Figure 12.1 depicts our framework for leveraging the digital traces in the 
social genome data to support evidence-based action. This “data to action hi-
erarchy” is adapted from the standard DIKW (data–information–knowledge–
wisdom) pyramid (Ackoff  1989) with an added focus on data science and its 
application to social genome data. At the foundation (level 1), we fi nd our 
social genome data library with an appropriate infrastructure for its secure and 
compliant access. One of the critical steps in data science is to defi ne a research 
question that will inform the domain but will also be feasible to answer with 
the data on hand. We need domain scientists who are able to map domain-
level questions and inquiries into tractable, or even abstract, tasks that provide 

1 In this scenario, the specifi c kinds of “domain science” needed will depend on the ultimate ana-
lytical and policy goals of the study, but might include, for example, public and environmental 
health, forestry, botany, meteorology, and urban planning. Furthermore, domain expertise in 
history, sociology, demography, and political science, with an emphasis on the local commu-
nity, may be essential.
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a target for the investigation. They will need a good understanding of what 
data are available in the social genome data library. These questions can then 
be used to help drive the analysis, using various methods (level 2), including 
KDD, machine learning (ML), artifi cial intelligence (AI), and other statistical 
methods. The expertise of domain knowledgeable computer scientists is essen-
tial here to be able to extract relevant data and determine appropriate analysis 
techniques to eff ectively address the given questions. The outcomes of these 
analyses are the answers to the tractable data questions that were posed. Ideally 
the initial results, this new information (level 3), can be used to generate new 
questions that can then lead to more insights. Though this is depicted as a 
pyramid, it is really an iterative process where questions are asked about data, 
which are analyzed using methods that produce information, leading to new 
questions, potentially requiring additional sources of data for analysis (and 
thus, perhaps, new methods). This process continues until the information that 
is produced results in new knowledge (level 4). This happens when multiple 
pieces of information can be combined by a human with their domain knowl-
edge, expertise, and experience. The new knowledge in the domain expert can 
then lead to actions and decisions based on data. Unlike highly automated anal-
ysis tasks, this process often requires a  team of data and domain scientists with 
a wide range of expertise iterating through many deliberations,  judgments, and 
analyses. In the following sections, we will expand upon the issues and chal-
lenges faced on this path from data to action.

Level 1: Data Infrastructure

The fi rst step for data to support action is to build a compliant data infrastruc-
ture (level 1) where social genome data can be ingested, often in the form of 

Figure 12.1 Data, information, knowledge, and action (DIKA) pyramid. KDD: Knowl-
edge Discovery and Data Mining; ML:  machine learning; AI: artifi cial intelligence.
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a data lake: a “repository storing raw data in their native format,” without a 
pre-defi ned purpose or specifi c intended use (Ravat and Zhao 2019). Along 
with the raw data, some type of metadata about the raw data must be managed 
so that use can be supported dynamically as the need arises. In addition to the 
data and metadata, we posit that the underlying software code used throughout 
the full data pipeline, (involving, e.g., ingest, cleaning, transformation) is also 
an integral part of the data infrastructure, in order to facilitate good science 
through replication and  reuse (Goodman et al. 2014). Typical users of the  data 
lake are skilled data scientists trained in both computer science and statistics 
with technical skills in data wrangling and pattern extraction.

By “compliant data infrastructure,” we mean the combination of secure 
computer systems along with the associated policy and procedure layers for 
data governance that facilitate compliance with legal and ethical obligations 
(Kum and Ahalt 2013) for use of the data. As data move through the diff erent 
processes described in the DIKA pyramid, access requirements will change, 
and an eff ective infrastructure will have more than one level of access (e.g., 
restricted, controlled, monitored, and open access). Access controls often 
relate to granularity of data; for instance, as in a scenario in which some 
users in some contexts are only able to access data that has been aggregated 
to a certain degree. Beyond purely technical controls, institutions generally 
require policy controls when analyzing social genome data, in the form of 
various types of security,  privacy, and human subject research approvals. 
The details of the data governance and ethical issues are beyond the scope 
of this paper, but the myriad of laws that apply to the diff erent data sources 
and purpose of use, and diff erent institutional policies on how to manage the 
risks involved, is not trivial and is often one of the major barriers to this type 
of research becoming mainstream. Managing these kinds of data governance 
complexities is one of the core methodological components of population 
informatics as a fi eld.

Case Study

Using the example of our wildfi re scenario, our data lake will contain several 
diff erent datasets from a variety of sources and take a variety of forms:

• Admission and discharge data reported by area hospitals and EDs to 
the county public health authority (structured,  de-identifi ed, both indi-
vidual level as well as aggregated into geospatial units)

• Data about transit and automotive  traffi  c patterns from the city’s 
Department of Transportation (geospatial, time series)

• Demographic information from city, state, and federal records (struc-
tured, possibly aggregated to varying levels ranging from county to 
neighborhood or Census tract, geospatial)
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• Geospatial/geographic features of the region (e.g., terrain height map, 
locations of bodies of water) and readings from air quality monitors 
(structured, dense time series, geospatial)

• Meteorological data (structured, dense time series, geospatial)
• Emergency management and wildfi re reporting data (structured, 

geospatial)
• Corpora of news articles, social media posts, shared photos produced 

before, during, and after the event (individual-level, unstructured text 
and images)

Simply assembling such a dataset represents a substantial technical challenge; 
each component will bring its own diffi  culties in terms of collection, storage, 
maintenance, errors,  uncertainty, and documentation. Some may be obtainable 
from published sources, while generating others may require close collabora-
tion with data providers. The scale and volume of each component data source 
is likely to be quite diff erent, and each will use fundamentally diff erent fi le 
formats, data models, and sampling frames. Furthermore, from a governance 
standpoint, diff erent parts of this dataset will require diff erent levels of care 
and oversight when being collected and used. Some of the information is gen-
erally publicly available (e.g., air quality readings), while other subsets of the 
dataset are of a more clearly sensitive nature (e.g., ED admissions), and may 
come with rules around who is able to access the data and in what ways or 
may require auditable records of when the data were accessed. Additionally, 
consider the corpus of social media posts; in this particular scenario, such data 
are best understood as being public but still sensitive (Martin and Shilton 2016; 
Nissenbaum 2011; Olteanu et al. 2019; Zimmer 2018) and, as such, must be 
treated with care (see Weigle et al., this volume). Note that the process of 
building a  data lake, just like that of the KDD process as a whole (Figure 12.2), 
is typically iterative: new data sources will likely be added as they become 
available, and, as our scope of analysis changes over time, diff erent sources 
may suddenly become relevant. It is also important to remember that our dif-
ferent sources of data may play diff erent roles over the course of the project; 
one kind of data may be considered as an exposure of possible interest in one 
analysis, and then in another analysis that same data element may be consid-
ered as an outcome (dependent) variable, or as a moderator for some other 
eff ect. One advantage of the data lake model (as compared to a model relying 
on a more formally structured data repository) is that it preserves the maximum 
fl exibility in how its constituent datasets may be used.

Levels 2 and 3: Application of Methods for Information

After assembling our data lake, the next step is to defi ne research questions that 
may be answered using the diverse data available in the social genome data 
library to extract new information in the fi eld (level 3). In this step, the main 
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task is to frame real-world questions into tractable data questions that can be 
addressed with the data available. This step is often led by domain scientists 
who are trained and have more experience in the newer data intensive meth-
ods in their fi eld. They often work closely with a strong  data science team to 
determine the most appropriate methods to apply to the raw data to address the 
question. Methods here are used very broadly to include the full KDD process 
(Figure 12.2) such as experiential design, measurement defi nitions, feature and 
sample selection, as well as modeling and  validation.

Once the research question, general methods, and data have been deter-
mined, the heavy lifting data science implementation begins (level 2). This 
is an iterative process that is often referred to as a spiral process, where each 
iteration will improve on the limitations of the previous spiral until the fi nal 
results meet the goals of the project. More computationally trained data sci-
entists may adopt the philosophy of agile development (Wells 2009), more 
often used for software development. This starts from the minimum viable 
product (MVP), by setting up the data pipeline from beginning to end to check 
all the basics and test feasibility in the fi rst spiral, then specifi es more details 
in diff erent parts of the data pipeline over the diff erent spirals. This way of 
implementing the data science project will allow for more  reproducible and 
tractable results, ultimately leading to more valid results. It also easily allows 
for engaging the domain scientist with diff erent levels of skills at the end of 
each spiral to do quick checks for staying on track to address the main research 
question in the domain. These meetings are critical to having results that are 
relevant to the domain and not getting pulled into the data too far from reality. 
It is important that the design of the study is well thought out ahead of time 
since it will be expensive in terms of time and eff ort to redo things if the setup 
is wrong. Testing out all aspects using the MVP in the fi rst spiral is one way to 
check on feasibility before the project gets too far into the weeds.

Figure 12.2 Knowledge discovery and data mining process.

From “Digital Ethology: Human Behavior in Geospatial Context,”  
edited by Tomáš Paus and Hye-Chung Kum.  Strüngmann Forum Reports, vol. 33, 

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 978026254813



218 H.-C. Kum, S. Bedrick, and M. C. Weigle 

Case Study

In the context of our wildfi re scenario, imagine an epidemiologist interested 
in health disparities associated with this particular exposure across racial and 
ethnic groups as part of a larger eff ort around determining how best to allocate 
resources from emergency preparedness funds. Wildfi re smoke is known to 
have heterogeneous impacts across the population (Davies et al. 2018; Liu 
et al. 2017; Masri et al. 2021), and  environmental justice requires that this 
be taken into account when planning interventions (Brulle and Pellow 2006; 
D’Evelyn et al. 2022). Our epidemiologist’s “big picture” research question 
might be something along the lines of: Are there diff erences in how wildfi re 
smoke is aff ecting the respiratory health of Latino and White residents of the 
city? There are many possible ways to address this question, depending on 
how one operationalizes various elements. Which path one takes will depend 
heavily on what specifi c data are available. The data scientist, then, will work 
closely with the epidemiologist to make the question more concrete, and to 
determine what aspects are feasible (and, just as importantly, what aspects are 
not). Beginning with the question of how to measure respiratory health impact, 
we may decide to focus on ED visits with certain groups of diagnosis codes; 
deciding which codes to include will require a certain amount of domain ex-
pertise in working with medical data.

Next, we turn to how to address the question of ethnicity. In our scenario, 
let us assume that the dataset of ED visits does not turn out to contain reliable 
information about the ethnicity of patients, which means we must rely on a less 
indirect statistical approach. We may not have direct ethnicity data, but we do 
have approximate mailing addresses from the billing records (approximate be-
cause they have been blurred/fuzzed as part of a  de-identifi cation eff ort by the 
original data provider), and, in combination with Census data, it may or may 
not be possible to use geography as a proxy to get at questions of racial and 
ethnic disparities; determining this aspect of the analysis will require not only 
statistical and computational expertise but also domain knowledge in racial 
disparities, and it may prove necessary to obtain additional or diff erent sources 
of data.

Finally, to quantify the amount of exposure to smoke, the data scientist will 
work with the epidemiologist to review available data from the air quality mon-
itoring network in the city; they may also need to involve additional domain 
experts, for example, specialists in environmental monitoring and sensing, or 
people with location-specifi c knowledge about the city’s air quality monitoring 
infrastructure. Together, they will make determinations about (a) the adequacy 
of coverage and quality, (b) modeling considerations around granularity (in 
terms of temporal and spatial resolution), and (c) possible issues integrating 
data from multiple sensor networks. At each of these steps, the original re-
search question will be refi ned, and new questions may be generated.
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Levels 4 and 5: Knowledge and Action

After valid results are obtained to the tractable data questions, the fourth step is 
to translate the data answer back to the real-world answer to the original real-
world question. It will be important at this phase to be transparent, describing 
exactly what population was used, how features were defi ned, what, if any, 
algorithmic black boxes were used, and the limitations of the study including 
the degree of  generalizability of the results. The devil is in the details in any 
data intensive study, and the details matter in how to interpret the results in the 
appropriate context. Research involving  social genome data typically involves 
numerous datasets from a variety of sources, meaning that these details have 
a way of multiplying in their complexity and subtlety. If the error and  uncer-
tainty is not well managed by data science experts, then the results will be 
meaningless.

Another common task at this step is to design and conduct sensitivity analy-
sis that can more clearly delineate the scope of the information obtained. When 
the full details of the study are eff ectively presented to data savvy decision 
makers, we posit that they will synthesize the data details and results into trans-
formational knowledge that can support evidence-based decisions and actions. 
We believe that information becomes knowledge in a person once the informa-
tion is understood well enough to apply to decision-making processes and ac-
tions. These data savvy decision makers in the domain are the third type of data 
scientists that have expertise in the domain as well as an intuition for what data 
can and cannot do, and good  judgment on how best to use evidence from data. 
Many of them are not trained at the PhD level and are key to having real-world 
impact from the new information and knowledge obtained from data-intensive 
scientifi c inquiry.

Case Study

Recall that the underlying motivation behind our analysis of wildfi re smoke 
impact was to help inform decision making about how to allocate emergency 
preparedness funds, with the goal of maximizing their impact on the commu-
nity’s health. Suppose that our analysts have now computed per-neighborhood 
estimates of air quality impact, and by linking them with Census data have 
found what appear to be disparities across ethnicities in terms of that impact. 
Intriguingly, however, they have also noticed some “outlier” neighborhoods 
(i.e., neighborhoods more heavily impacted by wildfi re smoke than the model 
would have predicted based on their demographic and geographic proper-
ties). In looking more closely at our data, we have spotted that these outlier 
neighborhoods are ones that have a larger-than-baseline number of living 
facilities for the elderly, and that the bulk of the larger-than-baseline number 
of ED visits from those neighborhoods are indeed from older members of 
the community.
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We have now produced knowledge and must translate it into action. This 
becomes an entirely diff erent matter, requiring a diff erent set of skills. Earlier 
in the analysis, our research questions and analytical plan were shaped by the 
data that were available to us. Now, we must be shaped by two variables that 
lay somewhat outside the realm of what is usually thought of as “data science”: 
our community’s values and the space of possible actions that may be possible.

In terms of our community’s values, recall that our goal is to “maximize 
impact” on the community’s health. It is of course crucial to ask what form 
this is to take; answering this question must necessarily include some consid-
eration of our community’s values. Are we primarily concerned with equality? 
If so, we may set our goals as being to provide a (possibly smaller) benefi t to 
the largest number of people possible. Alternatively, we may wish to prioritize 
 equity, and  focus on providing assistance to those who are more vulnerable or 
more heavily impacted, even if it means helping a smaller number of people 
overall. We may wish to prioritize justice and thus take historical patterns of 
inequality and oppression into account as we decide which parts of our com-
munity to focus on. Of course, these are not necessarily mutually exclusive 
ways of thinking, but the important thing to note here is that this is not a ques-
tion that we are able to answer using ML methods.

In terms of the action space available, we are similarly at the end of our 
road in terms of computational and statistical tools. We can off er suggestions 
informed by our analysis (some of the grant funding could go to cover air 
fi lter maintenance and upgrades to living facilities for the elderly, or to public 
outreach materials in specifi c languages) but fundamentally this may well be 
beyond our control.

We are not, however, at the limit of what we as data scientists can (and 
must) contribute from a methodological standpoint. Resolving questions of 
values and choices of action will involve disseminating the results of our anal-
yses to the community as a whole and to policy makers and will involve a great 
deal of communication. A key part of this will involve helping the consumers 
of our results to understand the provenance of our fi ndings, as well as what our 
level of uncertainty might be around individual conclusions. This may take, for 
example, the form of written reports, data visualizations (interactive or static), 
and simulations (answering “what if” or “for instance” questions), all of which 
are core parts of the data science process.

Open Questions and Challenges

Human in the Loop

One of the diffi  culties in being able to leverage fully the social genome data 
is that for a given research question, more data are not always better. In fact, 
as the following sections will demonstrate, often the plethora of what, at fi rst 
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glance, may seem like relevant data often will not turn out to be useful after 
more careful investigation. There are several reasons for this:

1. The sampling frame is unknown.
2. The variables are not measured in the right unit.
3. There are not suffi  cient variables available in the data to address the 

questions.
4. The diff erent available datasets cannot be integrated to address the 

question.
5. Similar constructs are measured on diff erent perspectives that do not 

align well.

“Garbage in, garbage out” is a principle all data scientists must heed. It is too 
easy to drown in data and lose sight of your research objectives. Thus, we 
posit that data science is a human-intensive intellectual activity that requires 
much thoughtful deliberation over many parts of the research, including re-
search question development based on an understanding of current theories 
in the fi eld, the feasibility of the study using available data, a thoughtful re-
search plan based an appreciation for experimental design, inferential statistics 
principles, and measurement. Data science is more art than science due to the 
countless  human judgments that are required. Data science is ultimately about 
sensemaking from raw data and trying to put the puzzle together to see the big 
picture. But for a particular puzzle, even though there may be a lot of pieces 
from lots of diff erent puzzles, there may not be enough relevant pieces to com-
plete the puzzle of interest. The data science team will usually have to fi ll in 
the blanks with good human judgment based on prior theories in the fi eld, good 
empirical research, and understanding the limitations of  big data. There are 
many barriers (e.g., aligning funding and authorship conventions with diff erent 
disciplinary  expectations and incentives) to working in interdisciplinary  team 
science that will be important to navigating the fi eld. For in-depth discussion, 
see Medeiros et al. (this volume).

Good Science, Bad Science, and Data Science

We should not confuse scientifi c inquiry with just running statistics on data. 
All statistical methods require subjective choices, and there is no objective 
decision machine for automated scientifi c inference. Thus, inference from the 
sample to a larger population must be scientifi c rather than statistical, even 
if we use inferential statistics. It must be scientists who make the inference, 
and “claims about a larger population will always be uncertain” (Amrhein et 
al. 2019; Gelman and Hennig 2017). We must remember that the acceptable 
level of  uncertainty for scientifi c inquiry and public policy decision mak-
ing is diff erent from when recommending products online, and it requires a 
higher level of rigor and precision. In sum, good science naturally requires 
much thinking, judgment, dealing with uncertainties, hypothesis generation, 
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hypothesis testing, and making correct interpretations after properly applying 
inferential statistics.

The full empirical scientifi c research cycle, as illustrated in Figure 12.3, 
involves observation–induction–deduction–testing–evaluation (De Groot and 
Spiekerman 1969). The fi rst phase of observation and induction is the explor-
atory data analysis phase where broad general inquiries are being made to gen-
erate good research questions and hypotheses using inductive reasoning based 
on observed patterns and past theories in the fi eld. The second phase of de-
duction, testing, and evaluation is the confi rmatory data analysis phase where 
worthy hypotheses are carefully selected and tested through good experimental 
design, data collection, and analysis contributing to the knowledge base in the 
fi eld including both the positive and negative results. What we learn from the 
confi rmatory analysis should inform the next iteration of exploratory analysis, 
providing direction for what next questions should be investigated. Note that 
“fi nding the question is often more important than fi nding the answer” (Tukey 
1980). Good empirical science has always been an iterative spiral process of 
exploratory analysis and confi rmatory analysis, one careful analysis at a time 
giving insight, leading to a body of literature that together produces knowledge 
through many costly and time-consuming iterations between inductive and de-
ductive reasoning.

What has changed with big data and data science is that now it allows for 
the full empirical scientifi c research cycle in one study. There is the potential 
in some studies to have enough data for even multiple iterations in the data 
lake, allowing for a much faster process of iterating between hypothesis gen-
eration and testing than ever before. In many ways data science is iterating be-
tween (a) traditional qualitative research and quantitative exploratory analysis, 
where the goal is to listen to the data and all of its constituent details as much 

Observation

Evaluation

Testing Deduction

Induction

Figure 12.3 The empirical research cycle (De Groot and Spiekerman 1969).
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as possible in an attempt to fi nd the common patterns and generate good hy-
pothesis through inductive reasoning, and (b) traditional quantitative research, 
where we conduct strict confi rmatory analysis to test the hypothesis through 
deductive reasoning. In any particular study in science, however, these two 
phases are not always so clearly separated, and it is easy to blur the lines and 
lose track of what analysis is being done. This can lead to bad science, where 
we forget that hypothesis testing cannot be conducted on the very data used to 
suggest the hypothesis (Wagenmakers et al. 2012). There is a risk in the spiral 
iterating process to confuse hypothesis testing and generation, leading to a 
fi shing expedition and over interpretation of the fi ndings. To guard against this 
danger, we must remember two important statistical principles that are key to 
good science: proper sampling from a well-defi ned sampling frame and clearly 
planning out your research question and approach before touching the data, 
regardless of whether it is exploratory or confi rmatory analysis.

First, in traditional sciences, one of the most important steps to get right 
is the sampling method. We must ensure that we use a representative random 
sample of the study population, including using stratifi ed sampling to ensure 
smaller subgroups are properly represented. In studies where the target pop-
ulation is diffi  cult to control, it is very important to clearly state the study 
population and note the acceptable scope of  generalizability. For example, in 
our wildfi re scenario, if only English-language social media posts were ana-
lyzed, noting it as a limitation of the study sample is very important to the 
interpretation of the results. Whenever possible, obtaining access to the full 
representative set of social media posts regardless of language and reporting 
out the percentage of the English-language posts in relation to the full universe 
will provide much better context for interpretation, even if limited time and 
resources only allow for analyzing English posts. In data science, because data 
collection often happens “out of band” as a separate activity as opposed to be-
ing part of the planned research itself, this key principle of sampling frame can 
get lost. We must remember, however, that no matter how much data we have, 
if there is not a proper understanding and description of the sampling frame, 
the results may be misleading or useless because it is not possible to interpret 
the results appropriately. A good example of this is the fact that even now, 
many years since the pandemic started, without a well-designed, nationally 
representative random sample for tracking infections and outcomes, we still 
do not know the incidence of  COVID-19 in the United States, even with the 
many sources of data online about COVID-19 cases and deaths (Dean 2022). 
The rates estimated in the Stanford COVID-19 antibody study (Bendavid et 
al. 2021) were quickly challenged by statisticians (Gelman 2020; Gelman and 
Carpenter 2020).

Second, in confi rmatory analysis, two major issues with applying inferential 
statistics on big data are that p-values are directly related to sample size, and 
that there are no good solutions to multiple statistical tests being performed 
on one dataset (Tukey 1980). Some consider the most conservative approach 
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with Bonferroni Correction in these situations, but many believe it can create 
more problems than it solves (Perneger 1998). Others will pay more attention 
to the eff ect size rather than the p-values. Some have argued that there is no 
real alternative, and in most truly confi rmatory studies, one must have “a single 
main question in which a question is [pre]specifi ed by ALL of design, col-
lection, monitoring, AND ANALYSIS” (Tukey 1980; see also Wagenmakers 
et al. 2012 and Miguel et al. 2014). The pre-specifi cation of the study plan 
for confi rmatory hypothesis testing analysis is very important but also often 
diffi  cult to follow because there will likely be something that does not go as 
planned in real research; furthermore, in many scenarios involving secondary 
use of data, pre-specifi cation is diffi  cult because it is not always clear what 
data will be available and in what form. Further, the distinctions between 
exploratory analysis for hypothesis generation and confi rmatory analysis are 
too often not understood, and results of exploratory analysis are reported and 
interpreted as confi rmatory analysis, leading to bad science (Wagenmakers et 
al. 2012). Even in exploratory analysis where there are no hypotheses, it will 
be important to have thought through the main research question and be aware 
of the relevant literature in the fi eld to guide the descriptive study (Miguel et 
al. 2014; Tukey 1980).

Data Integration, Aggregation, and Measurement

The data that form the basis for this type of  research come from a variety of 
sources and are linked together to overcome the limitations of data collected 
for operations from one source, because alone they often do not contain suf-
fi cient information for a study. On one hand, the integration of the diff erent 
data sources can augment the primary source and improve the completeness 
and comprehensiveness of information and potentially provide the important 
context for the data. On the other hand, errors, which exist in all real-world 
data, may get amplifi ed when more datasets are linked together, making it 
more complex to track and bound error in the results (Baldi et al. 2010; Bollier 
2010; Harron et al. 2017). Dealing with  uncertainty and error is fundamental to 
working with any real-world data, but if it cannot be bounded in some way, it 
renders the results mostly useless and can often be misleading. Managing and 
bounding errors throughout the full data science process for proper interpreta-
tion of results is an open area of research.

Integrating data from disparate sources is rife with methodological as well 
as technical challenges. The method of linking individual or organizational 
level data is often referred to as  record linkage (RL), or entity resolution 
(Dusetzina et al. 2014; Getoor and Machanavajjhala 2012; Gilbert et al. 2017; 
Karim et al. 2021). In the wildfi re case study, ED data from diff erent hospi-
tals are likely to require RL to obtain unique people counts because diff erent 
hospital systems will not have a common ID system. The absence of a com-
mon, error-free, unique identifi er makes exact matching solutions inadequate, 

From “Digital Ethology: Human Behavior in Geospatial Context,”  
edited by Tomáš Paus and Hye-Chung Kum.  Strüngmann Forum Reports, vol. 33, 

Julia R. Lupp, series editor. Cambridge, MA: MIT Press. ISBN 978026254813



 Use of Large-Scale Population Datasets for Scientifi c Inquiry 225

leading to approximate methods (probabilistic or deterministic) that require 
cleaning and  standardizing data as well as manual resolution of ambiguous 
matches. It is an open area of research that is further complicated with issues 
of  privacy and  confi dentiality due to the need to use identifi able information.

One line of research is the privacy preserving RL methods based on hash-
ing. These methods are computationally set up to solve the private RL problem, 
which focuses on linking data securely given a predetermined linkage mapping 
function. These algorithms assume a machine-only system that limits human 
interaction, making it very diffi  cult to determine the linkage function, clean and 
standardize data, as well as check on the validity of the results, which is critical 
in real applications (Hall and Fienberg 2010; Vatsalan et al. 2017). Another is-
sue with machine-only RL systems is selection bias as a result of preferentially 
selecting patients with complete information on required identifi ers. This can 
underrepresent particular groups, including the socioeconomically disadvan-
taged and racial/ethnic minorities (Bronstein et al. 2009; Harron et al. 2014). 
Thus, balancing the accuracy of RL with privacy is an active research area 
without a known technical solution (Hall and Fienberg 2010; Kum et al. 2013; 
Vatsalan et al. 2017). Recently, a more human-centered AI RL system has been 
proposed that allows researchers to integrate directly, but securely, individual-
level data (Kum et al. 2013). MiNDFIRL (Minimum Necessary Disclosure For 
Interactive Record Linkage) uses ML for the automated components (Antonie 
et al. 2014; Ramezani et al. 2021) and interactive on-demand incremental in-
formation disclosure for privacy-aware manual review components (Kum et 
al. 2019; Ragan et al. 2018) that allow for  optimizing both utility and pri-
vacy. It further facilitates data governance through template documents for 
privacy statement, DUA, and IRB application that communicate the complex 
parts of the technology used in the appropriate language for each community 
(Giannouchos et al. 2021; Kum et al. 2022; Schmit et al. 2020, 2024).

Besides technical issues, there are deeper and more fundamental problems 
that come from integrating data in this way. Datasets do not arise ex nihilo: 
they are designed, collected, postprocessed, and distributed by humans, in re-
sponse to specifi c needs, values, and constraints. Along the way, those same 
humans make numerous conscious and unconscious choices that shape the fi -
nal form of a dataset. Examples of such choices might include which underly-
ing phenomena to capture and what abstraction and modeling compromises to 
make in order to represent the phenomena of interest; where and how to collect 
observations; which observations to include (and which to exclude); and what 
unit to aggregate to. Those humans are themselves operating within a variety 
of structural constraints that aff ect everything from the fundamental questions 
they are asking to the mechanics of how their data are collected. As such, data-
sets are in no way neutral (i.e., value-free) artifacts (Boyd and Crawford 2012).

It is important to note that this is not a critique; it is, rather, a reminder, and 
a simple observation about the nature of real-world data. It is crucial, then, to 
consider carefully the “story” behind any given dataset. This is particularly 
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true in a secondary use scenario, in which, for instance, the values, constraints, 
and priorities that shaped one dataset may diff er from another and may fur-
thermore be quite diff erent from those shaping your analysis. In practice, what 
does this look like? In the case of our wildfi re scenario, one example might 
be a dataset of air quality monitoring records in which, due to logistics of 
how sensors are placed, there is an uneven spatial coverage across a city. In 
such a situation, some parts of the city may have been thoroughly covered, 
whereas the coverage in others may be sparse due to variability in budgeting 
and departmental priorities over time at the local branch offi  ce of the local 
Department of Environmental Quality. For its original scenarios of use, this 
irregular placement may not have posed issues. Our current analysis, however, 
needs to model conditions across the entire city; without taking this underlying 
issue into account, we could easily end up with estimates of our outcome of 
interest that varied in their accuracy according to geography.

When choosing whether and how to use a given dataset, one must ensure 
that the assumptions made by its originators are compatible with our present 
study. Even given that level of compatibility, though, we may encounter prac-
tical diffi  culties in directly integrating data points from disparate datasets if 
the underlying numbers are measuring qualitatively diff erent phenomena. For 
example, to continue our wildfi re analogy, let us imagine that the city and the 
state both have air quality monitoring programs, neither of which has complete 
geographic coverage of the metro area on their own, but which taken together 
have good coverage. May we combine the datasets?

To guide us in thinking through these kinds of challenges, and successfully 
integrating data in this way, we turn to measurement theory and its notions 
of constructs and measurement models. By construct we refer to a theoreti-
cal abstraction of the underlying phenomenon that a dataset is attempting 
to describe (e.g., air quality). Generally, such phenomena are unobservable 
and abstract, and must instead be explored using observable properties of 
the world. The process of doing so is referred to as operationalizing our 
construct via a measurement model. For example, consider the (unobserv-
able) construct of “air quality”: in the context of a wildfi re smoke event, 
we would expect that a resident of our city might experience a decrease in 
their air quality; further, we might expect the amount of decrease to vary 
according to a number of diff erent factors (e.g., wind, geography, the HVAC 
confi guration of their home). Because “air quality” may mean many diff erent 
things (e.g., concentration of a specifi c pollutant, or the presence or absence 
of some set of chemical pollutants), it may be operationalized (i.e., estimated 
via one or more observable phenomena) in a number of ways, depending 
on the specifi c needs of a given project. For instance, one study might op-
erationalize air quality via a quantitative estimate of the concentration of 
particulate matter of a certain size (e.g., PM2.5), while another might focus 
on carbon monoxide concentrations. A third study might not have access to 
appropriate  sensor data from a given geographic area, and thus might measure 
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something more indirect, such as the number of ED visits with respiratory 
complaints. The degree to which a measure meaningfully models and refl ects 
its underlying construct is referred to as its  construct validity; often specifi c 
methodological and engineering choices are made around how to record an 
observable phenomenon in order to capture a particular construct adequately. 
The same observable phenomenon may furthermore be recorded in a very 
diff erent manner (e.g., at a diff erent timescale) depending on the underlying 
construct of interest.

For purposes of data integration, the fi rst prerequisite, then, is that the data 
elements that we wish to integrate are attempting to represent the same con-
struct. From there, many things become at least theoretically possible; assum-
ing that our two measures (PM2.5 and ED visits) are indeed valid, it may be 
possible to combine them in some useful way, perhaps by calibrating them to 
one another and then computing a proxy variable of some kind, under the close 
guidance of a statistician accustomed to such methods.

Moving beyond integration of continuous data, similar issues can also arise 
with categorical data. A particularly common area of diffi  culty in data integra-
tion involves sociodemographic data (e.g., race and ethnicity categories). This 
is an extremely complex and challenging issue (Bowker and Star 1999) and 
there are no “good” answers, only more or less imperfect ones.

Matching Comparison Group in Observational Studies

One of the key characteristics of data science is that it relies on existing data 
sources. In scientifi c terms, it relies on observational data that were collected 
for another primary purpose (e.g., operating a hospital) outside of research. 
Thus, conducting research with these data is a secondary purpose. This means 
that researchers have no control over the  data collection process and method-
ology and are limited to existing data. Thus, these studies are often called ob-
servational studies, secondary database studies, or retrospective studies. One 
of the main challenges when working with large existing databases is extract-
ing meaningful measures and adjusting for the sampling that can address the 
research question, taking into account the limitations of how the data were 
collected, which often does not align well with the research question. This is 
very diff erent from controlled experimental studies where data collection is 
carefully designed to manipulate the variables so that their eff ect upon other 
variables can be directly observed while other conditions are kept constant 
(Shadish et al. 2001).

Unfortunately, there are many experimental studies in sciences that are not 
possible for a variety of reasons, and the next best alternative may be obser-
vational studies using treatment and comparison groups that are carefully de-
signed to adjust for covariates to the extent possible, either through multivari-
able modeling or matching. In our case study, investigating the diff erential 
impact of the wildfi re across racial groups may benefi t from gathering similar 
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data from a matching comparison group from a city with similar characteristics 
but no wildfi re to provide a baseline.

There are numerous variations for matching, using propensity scores, that 
can lead to many decisions:

• What are the appropriate covariates to match on?
• How many comparison samples should be matched to one treatment 

sample?
• What minimum caliper should be used?
• How exact does the match need to be?
• Should sampling be done with or without replacement?

Thus, it is important to think through “the design and compare several matched 
designs for an observational study just as one compares experimental de-
signs before picking a satisfactory design” (Rosenbaum 2020). It is crucial 
that matching is conducted without access to any outcome data, thereby as-
suring the objectivity of the design. It is important to note that outcome data 
are specifi c to a given project and must occur after the event of interest (e.g., 
wildfi re), and it should be distinguished from exposure data for the project, 
which occurs before the event of interest and may look similar to outcome 
data. For example, in the wildfi re example, ED admission data from after the 
wildfi re are outcome data, but ED admission data from before the wildfi re 
may be covariates that measure the baseline condition of the community that 
should be accounted for in the analysis. This may be done in diff erent ways 
such as baseline level of ED visits by zipcode before the wildfi re. Thus, ED 
admission data may be used for matching, as long as it is a measurement that 
occurred before the event of interest. In addition, matching does not preclude 
additionally adjusting an estimate through multivariable modeling using the 
matched sample when appropriate (Rubin 1979). A good review of matching 
can be found in Rosenbaum (2020), who notably describes a methodological 
approach that follows very closely with the general data science approach, in 
that it involves exploring many diff erent implementations iteratively for best 
insight and produces its fi nal conclusion by synthesizing all results using  hu-
man judgment. Another relevant approach is to use inverse probability of treat-
ment weighting (IPTW), to weight the subjects to obtain unbiased estimates 
of average treatment eff ects in observational studies (Austin and Stuart 2015). 
Nonetheless, adjusting for observable diff erences in these ways does not fully 
address concerns that the treated and comparison groups may still diff er in 
terms of unobserved covariates. This is a limitation of all observational studies, 
and it may be further exacerbated through matching if not carefully designed, 
because the matching process exacerbates the imbalance in the unobservable 
across groups (Brooks and Ohsfeldt 2013).
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Other Considerations

We focused this paper on the role of  human judgment in data science, which 
limited our discussion of other important topics. In this section, we briefl y 
mention other open challenges to consider. First, randomly splitting the data 
into training,  validation, and testing datasets is common practice in ML proj-
ects to avoid overfi tting the data, and this technique is critical to having valid 
results in data science. This process facilitates fi nding the most generalizable 
model to keep the balance between bias and variance. On the one hand, this 
strict rule has parallels to exploratory analysis (training/validation phase) and 
confi rmatory analysis (testing) phase in traditional science. On the other hand, 
there are suffi  cient diff erences between ML models and regression models, and 
better understanding of the commonality and distinctions would be helpful. 
One key distinction lies in the fact that ML is based on inductive reasoning 
while hypothesis testing using regression models are based on deductive rea-
soning, which gives rise to diff erences in interpretation. Recently, there have 
been advances in the bias-variance trade-off  that may be of interest to those us-
ing ML (Belkin et al. 2019), but this is beyond the scope of this paper. Second, 
we have scoped this paper on challenges to analyzing existing secondary data 
sources, precluding discussion on simulations and electronic data collection 
(e.g., app, social media based), which may also be relevant to digital ethol-
ogy. We refer interested readers in simulations to San Miguel et al. (2012) for 
a discussion on challenges in complex system science. In addition, some key 
topics were not included in this paper because they are discussed elsewhere in 
this volume. These include limited discussions on challenges to using social 
media data specifi cally, covered by Weigle et al. (this volume), as well as im-
portant discussions on ethics and data governance covered by Medeiros et al. 
(this volume).

Conclusion

We have outlined the challenges in using data science approaches to study 
large-scale population datasets, which we refer to as  social genome data be-
cause the term has been used in other related fi elds to refer to the digital foot-
prints left by humans (Kum et al. 2014; McGrail and Jones 2018). The library 
of social genome data can be used as a basis for inquiry, allowing analysts to 
answer complex high-level domain questions. We describe this process based 
on the DIKA pyramid, which provides a framework for approaching such 
problems. The ultimate goal is to allow data scientists, domain experts, and 
decision makers together to use the social genome data to produce actionable 
policy through the generation of new knowledge. We highlight many of the 
challenges in this process, including several diffi  cult aspects of working with 
heterogeneous, error prone, real-world data, and we emphasize the essential 
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role of data scientists in producing quality science in this area. A successful sci-
entifi c inquiry using data science methods requires an expert toolsmith who can 
navigate the  data lake with many computational and statistical tools to meet the 
domain goals, bringing in domain experts in the many decisions as appropriate 
(i.e., to help generate meaningful and feasible questions, decide on the right 
experimental design, operationalize measures, correctly interpret the fi ndings, 
disseminate to appropriate audiences) to build a well-documented, transparent, 
and reusable process. The data scientist must pay attention to experimental de-
tails, remembering the key principles of statistical inference, such as sampling 
frames, uncertainty management, and the diff erence between exploratory and 
confi rmatory analysis. This requires sensemaking by iteratively zooming in 
and out as appropriate. There is no one formula or method for how to analyze 
such data, and there are many pitfalls that can be encountered. Applying data 
science for rigorous scientifi c inquiry depends upon the judgment, expertise, 
and experience of the entire study team.
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